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This paper gives a solution of the problem of the variable scattering 
and absorption of light in a medium, the optical properties of which are 
changing. The amount of scattering material (for example, droplets of 
water existing in the dispersed state in air) is assumed to depend on 
the total energy of absorbed light. The initial concentration of the 
scattering material is assumed to be constant. At later times, it de- 
creases, the decrease depending linearly on the quantity of absorbed 
radiation. 

Relations of this type will be observed, for example, in the case 
where solar radiation acts on a cloud, when the quantity of moisture 
occurring in the form of an aerosol will be reduced by vaporization. The 
rate of vaporization - that is, the quantity of water vaporized in unit 
time - will obviously be proportional to the quantity of absorbed radi- 
ation. Any inertia of this process is neglected. 

We shall be concerned with a one-dimensional problem: that is. with a 
semi-infinite medium which consists of parallel layers, the optical pro- 
perties of which are functions of z and t. Radiation from outside this 
region penetrates into the medium. 

L We propose for consideration a radiation flux I which is a function 
of the titi t, the coordinates z and, in the general case, of two angular 
coordinates 8 and+, the center of which is located at the point from 
which the radiation originates. 

In this case we have for the determination of I a system of two equa- 
tions I1 1 
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z= -ua*I+i?, &= pa* ss I do’ 
43t 

a 

Here the case is considered in which equilibrium exists at each moment 
of time, as far as radiation is concerned; and therefore in Equation 
(1.1) one may neglect the time derivative of I which is divided by the 
speed of light [2 I. In the second expression, the integration is carried 
out over the solid angle. We assume the scattering is uniform over a 
sphere. In the more general case, the integral will have the following 

form : 

Here K(Y) is the scattering index, which specifies the fraction of 
radiation flux scattered in a given direction. ‘Ihe quantity y is the 
angle between the incident and scattered light. 

In the case of the spherical index for light-scattering, the light is 
scattered equally in all directions, so that K(Y) = 1. 

In Equations (1.11, a* is the volume coefficient of absorption of the 
medium, that is, the quantity of radiation (expressed, for example, in 
calories), which is absorbed per unit volume. 

We shall consider the medium in which the scattering material is con- 
tained; the volume coefficient of absorption will be proportional to the 
concentration of that material p(z, t). Thus, a* = ap (z, t). 

‘Ihe quantity t3 (the ratio of the scattered to the absorbed radiation) 
will be assumed constant. 

l’hus the basic assumptions relating to absorption and scattering are 
as follows: 

a) ‘Ihe absorption coefficient is proportional to the concentration of 
the absorbing material. ‘Ihis would be valid, for example, in the case 
where absorption is dependent on multiple reflection and refraction from 
the different particles of which the absorbing and scattering material 
is made. 

b) ‘Ihe ratio of scattered radiation to absorbed radiation is constant, 
and does not depend on the dispersion of the particles. Ihis corresponds 
to the assumption that the albedo of each particle does not depend on 
its size. 

F.quation (1.1) may be written in the following form: 
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cos 8 $ = - ap cz, t) .I + &, & = pap p, t) \ j I d$ 
‘n 

a, in other words 

cos 8 f! 1 
---=-“p\\I$ az UP (z, t) 

0 

(I.21 

(1.3) 

where 8 is the angle between the direction of the beam of radiation and 
the z-axis. 

If we introduce the new variable 

z = a j p (5, t)dL 
0 

(1.4) 

then from (1.3) we obtain 

cos8~=-I+tjpd~ 
n 

(1.3) 

Equation (1.5) corresponds to the case of absorption and scattering 
of radiation in a medium for which the coefficient of absorption is con- 
stant and equal to unity, and in which the variable r performs the func- 
tion of the variable z. 

We first consider the case where the intensity of radiation entering 
the medium from outside is constant. Later we shall also consider the 
case where the intensity of radiation depends on time. If we introduce 
the function B(t), equal to the quantity of radiation absorbed per unit 
volume and per unit time 

B(r)=\\Ido’ (1.6) 
. < D 

then one obtains the following integral equation [l 1 for its determina- 
tion: 

B (z) = Ioe--T + $ r B (a) Ei (1 z - o 1) do 
0 

(1.7) 

Here 

s 

In calculating B(r) it is convenient to use the method of successive 
approximations. The first approximation, corresponding to the case of 
the absence of scattering, will be 
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The second approximation 

Succeeding approximations may be obtained in an analogous manner. 

If we revert to the original system of coordinates, then for the 
amount of absorption of radiation per unit volume we have the expression 

B (5, t> = B (z) g (1.11) 

Since, according to the original assumptions, the concentration of the 
scattering material decreases linearly with the quantity of absorbed 
radiation, we obtain for determination of p (z, * t), the following equation: 

(1.12) 

Here pB is the initial concentration of scattering material, and h is 
the coefficient of proportionality relating the rate of change of con- 
centration of that material with the intensity of absorbed radiation. 

From (1.4) we have 

p (2, t) = ;$ 

On the basis of (1.12) and (1.13) we obtain 

We introduce the function 

c5 

Then we obtain 

qt)i&d!! 

haB (z) 2 

(1.13) 

(1.i4) 

(1.15) 

(1.16). 

If we consider successive approximations, then, using (1.91, we obtain 

CD, (z) = I, 7 e-ado = I,e-’ (1.17) 

f 
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‘Ihe next approximation, resulting from (l.lO), will be 

CD, (T) = I, (e-~ -k pi dz (Pfz-fiJ Ei (i r - w 1) &0)) 
7 0 

(1.18) 

On the basis of (1.16), Equation (1.14) takes the following form: 

2 = )$Q)(Q 01 
azat az ’ d [” - pa ($1 = 0 az at (p = hcc) (1.19) 

‘Ihe function r , which satisfies this equation, may be expessed 
through functions of z and t. 

From (1.19) it follows that r satisfies the following ordinary differ- 
ential equation: 

2 - @qz) = f (t) (1.20) 

We set the boundary conditions for the determination of r. The func- 
tion I is determined within the quandrant of the zt surface in which 
O<t<mandO<z< 00. We have the expression (1.4) 

From this it follows that r = 0 where z = 0. At t = 0, the initial 
condition is p(z, t) = PO On this basis, r = r o = ape z for t = 0. Since 
r = 0 for z = 0, and in view of the fact that dr/ dt = 0 from (1. ZO), we 
have 

From this we obtain 

f (t) = - PO (0) (1.21) 

~=P(a,(z)--P))~ or ‘j @(E)dJ,(q=P~ (1.22) 

5. 

Since r o = apOz for t = 0, we finally obtain 

(1.23) 

From this, after some manipulation, and determining r as a function 
of z and t from (1.13), we obtain the concentration of the scattering 
material p(z, t). We obtain the function ar 1 from the integral equation 
(1.7) and the relation (1.15). 

Approximate expressions for @r 1 are given in (1.17) and (1.18). 

In the case considered above, the intensity of incoming radiation was 
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constant. If this quantity (designated by I,(t)) depends on time, then 
from (1.12) we have 

p(z, t) =po-hil,(s)B(T)~d. 
0 

(1.24) 

In this case it is necessary to introduce a new variable 

6 = * I, (s) ds I (1.25) 

0 

as a result of which Expression (1.24) is 
(1.12 ) . Thereupon, repeating the previous 
ing equation for the determination of r: 

1 . 5 dt 
xi Q(E) - @Ku = 

UP"Z 

transformed into the form 
steps, we arrive at the folio+ 

t 

s IO(S) ds (1.26) 

0 

2. We consider the problem in which radiation is only absorbed and 
not scattered. Ibis would correspond to the case where we use “Lrpression 
(1.17) to specify @(v ), which appears in Equation (1.19). In this case 
it is not hard to obtain an expression for p(z, t) in explicit form. It 
can be obtained by transformation of the integral (1.23), which in this 
case is reduced to elementary functions. A slightly different method of 
obtaining r and p is given below. 

Thus, let Q(T ) = I,e-’ . In this case the equation takes the form 

$ - pIoe-T = f (t) (2.1) 

‘Ihe solution of this equation depends on one function of z, and also 
on one function of t, since the function f(t) on the right is arbitrary. 
The substitution q5 = e-l reduces (2.1) to the Bernoulli equation 

$(kcF)-+-9=-f(t), or ~+j(t)~fv@=O (Y = lJJ,) (2.2) 

We introduce a new variable s = ut and designate 

0’ (s) = ;I (G), b q=exp\‘pdE 
0 

(2.3) 

For the function $ we obtain the following expression: 

II, = nz’ (z) exp (- \ g’ (E) dE> _t h (z) 

0 

(3.4) 

From this we obtain 
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(P = 2 [k (g (4 + h (4)l (g (4 = exp j g’ (8 G) 
0 

Thereupon we obtain an expression for 4 

g' (s) 
cp = g (4 + h (2) 

Further, in conformity with (1.13) and (2.3), we have 

Substituting in this Expression (2.6), we obtain 

(2.5) 

(2.Q 

(2.7) 

(2.8) 

To determine the functions g(s) and h(z) we use the boundary condi- 

tions. Since r = -1g + = 0 for z = 0, and consequently 4 = 1, then 

cp= 
goes 

gOeS --h (0) +h (2) 
(2.9) 

On the basis of the condition that p = pO for t = 0 or s = 0, we ob- 
tain 

h(z)= g,,eapoz -gg, (2.10) 

Using (2.10) and (2.11), and also reverting to the previous variables, 

we obtain for the concentration of scattering material 

P (27 t) = PO ea*lot 

eaPOz 

_ 1 + eaPoz 
(2.11) 

Expression (2.12) was obtained for the case in which the radiation 

begins to penetrate the medium at the time t = 0, and is subsequently 
constant in intensity. However, the result can easily be generalized to 

time-dependent radiation by the method reported at the end of the pre- 

ceding section. 
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